Skip to content
Skip to navigation
# How Our Universe Could Emerge as a Hologram

Feb 28 2019

Categories:

Blog, Faculty

The fabric of space and time is widely believed by physicists to be emergent, stitched out of quantum threads according to an unknown pattern. And for 22 years, they’ve had a toy model of how emergent space-time can work: a theoretical “universe in a bottle,” as its discoverer, Juan Maldacena, has described it.

The space-time filling the region inside the bottle — a continuum that bends and undulates, producing the force called gravity — exactly maps to a network of quantum particles living on the bottle’s rigid, gravity-free surface. The interior “universe” projects from the lower-dimensional boundary system like a hologram. Maldacena’s discovery of this hologram has given physicists a working example of a quantum theory of gravity.

But that doesn’t necessarily mean the toy universe shows how space-time and gravity emerge in our universe. The bottle’s interior is a dynamic, Escheresque place called anti–de Sitter (AdS) space that is negatively curved like a saddle. Different directions on the saddle curve in opposite ways, with one direction curving up and the other curving down. The curves tend toward vertical as you move away from the center, ultimately giving AdS space its outer boundary — a surface where quantum particles can interact to create the holographic universe inside. However, in reality, we inhabit a positively curved “de Sitter (dS) space,” which resembles the surface of a sphere that’s expanding without bounds. [Read more.]