Skip to content Skip to navigation

Beyond The Standard Model

The Standard Model of particle physics is amazingly successful, yet it leaves many basic questions unanswered.  From bizarre, unexplained parameters such as the cosmological constant, Higgs mass, or neutron electric dipole moment to the lack of explanation for observed phenomena such as dark matter and baryogenesis, there is strong evidence that the Standard Model must be extended.  At SITP we have focused on finding solutions to these open problems to discover what these hints tell us about the underlying laws of physics.

Video Briefs

The discovery of the Higgs particle at the Large Hadron Collider in 2012 completes the Standard Model of particle physics, which successfully accounts for almost all phenomena observed in the universe. In part 2 of this lecture series, Professor Savas Dimopoulos of the Stanford Institute for Theoretical Physics (SITP) will overview this model and some of the deep questions that suggest going beyond it to theories with extra dimensions, supersymmetry, string theory and the multiverse.

The discovery of the Higgs particle at the Large Hadron Collider in 2012 completes the Standard Model of particle physics, which successfully accounts for almost all phenomena observed in the universe.  Professor Savas Dimopoulos of the Stanford Institute for Theoretical Physics (SITP) will overview this model and some of the deep questions that suggest going beyond it to theories with extra dimensions, supersymmetry, string theory and the multiverse.

People

What is the origin of mass? Are there other universes with different physical laws?

Professor Dimopoulos has been searching for answers to some of the deepest mysteries of nature. Why is gravity so weak? Do elementary particles have substructure? What is the origin of mass? Are there new dimensions? Can we produce black holes in the lab?

What physics lies beyond the Standard Model and how can we discover it?

News Items

The Stanford Institute for Theoretical Physics (SITP) is searching for postdoctoral fellows across the full range of theoretical physics.

Sep 27 2019
The history of particle accelerators is one of seemingly constant one-upmanship. Ever since the 1920s, the machines – which spur charged particles to near light speeds before crashing them together – have grown ever larger, more complex and more powerful.
Sep 26 2019
A team of Stanford University researchers are on a mission to identify dark matter once and for all. But first, they'll need to build the world's most sensitive radio.
Sep 10 2018
This five-part series tells the story of how theoretical physicists at Stanford helped develop the String Theory Landscape.
Nov 18 2016

After the historic announcement of the discovery of gravitational waves from merging black holes by LIGO, Peter Graham answered questions on the discovery and gravitational waves in general at

Dec 1 2015
The Cosmic Axion Spin Precession Experiment (CASPEr) has received funding for phase 1 from the Heising-Simons and Simons Foundations.

Pages

Subscribe to Beyond The Standard Model