Microscopic Entropy of AdS Black Holes

Finn Larsen

University of Michigan

Stanford ITP Zoominar
June 15, 2020
Microscopics of Black Hole Entropy

- The Bekenstein-Hawking area law for black hole entropy:
 \[S = \frac{A}{4G_N} \]

- In favorable cases string theory offers a microscopic interpretation of the black hole: specific constituents, ...

- Statistical understanding \(S = \ln \Omega \) of the area law and more: higher dimension operators, quantum corrections, ...

- These developments are among the most prominent successes of string theory as a theory of quantum gravity.
AdS$_5$ Holography

- The best studied example of holography: String theory on AdS$_5 \times S^5$ is dual to N=4 SYM in $D = 4$.

- **Microscopic details** well understood (Quantum Field Theory!)

- The area law entropy of black holes in AdS$_5$ is a crude target: just the asymptotic density of states.

- Yet: only recently were quantitative agreements established in this context.

Hosseini, Hristov, and Zaffaroni 1705.05383
Cabo-Bizet, Cassani, Martelli, and Murthy 1810.11442
Choi, Kim, Kim, and Nahmgoong 1810.12067
Benini and Milan 1811.04017
Zaffaroni (review) 1902.07176.
This Talk

Overall focus: **Supersymmetric** AdS$_5$ black holes and their **nearBPS** relatives.

Outline:
- Black hole **thermodynamics**: “phenomenology”.
- Lessons from black holes in AdS$_3$.
- Relation to nAdS$_2$/CFT$_1$ correspondence.
- **Structure** of microscopic theory \Rightarrow some puzzles.

Ongoing research (supported by DoE) with Sangmin Choi, Nizar Ezroura, Junho Hong, Siuyl Lee, Billy Liu, Jim Liu, Jun Nian, Shruti Paranjape, Yangwenxiao Zeng.
Quantum Numbers

- Geometry: $\text{AdS}_5 \times S^5$ has (superconformal extension of) $SO(2, 4) \times SO(6)$ symmetry.

- Fields in $SO(2, 4)$ representations: conformal weight E and angular momenta $J_{a,b}$.

- Fields in $SO(6)$ representations: R-charges Q_I ($I = 1, 2, 3$).

- So asymptotic data of (electric) black holes in AdS_5: Mass M, Angular momenta $J_{a,b}$, and 3 R-charges Q_I.
Classical Black Hole Solutions

▶ General supergravity solution (Wu ’11).

 Independent mass M, angular momenta $J_{a,b}$, R-charges Q_I.

 Not widely known (and exceptionally complicated).

▶ General BPS (supersymmetric) solution: Gutowski+Reall ’05.

▶ BPS mass = “ground state energy” ($g = \ell_5^{-1}$):

$$M = \sum_{I} Q_I + g(J_a + J_b)$$

Novel features (not shared by asymptotically flat black holes):

▶ Only 2 SUSY’s preserved $= \frac{1}{16}$ of maximal.

▶ Quantum numbers Q_I, J_a, J_b are related by a nonlinear constraint. Specifically, rotation is mandatory.
The Black Hole Entropy (BPS limit)

\[S = 2\pi \sqrt{Q_1 Q_2 + Q_2 Q_3 + Q_1 Q_3 - \frac{1}{2}N^2(J_a + J_b)} \]

- \(Q_I, J_{a,b} = \text{integral} \) charges. \(N = \text{rank} \) of dual gauge group.

- There are two scales in the problem: \(g = \ell_5^{-1} \) and \(G_5 \).

- They are \text{related as} \(\frac{\pi}{4G_5}\ell_5^3 = \frac{1}{2}N^2 \).

- \text{Classical charges} are \(\sim N^2 \) so the entropy is also \(\sim N^2 \).
The Constraint on Conserved Charges

BPS black holes all have charges satisfying:

\[h \equiv \left((Q_1 Q_2 + Q_2 Q_3 + Q_1 Q_3) - \frac{1}{2} N^2 (J_a + J_b) \right) \left(\frac{1}{2} N^2 + (Q_1 + Q_2 + Q_3) \right) \]

\[- \frac{1}{2} N^2 J_a J_b + Q_1 Q_2 Q_3 = 0 \]

Corollary: **two** distinct deformations break supersymmetry

- Recall: \(T = 0 \) \(\iff \) extremality \(M = M_{\text{ext}} \) (lowest mass (given conserved charges))

- Standard SUSY breaking: **mass exceeds** \(M_{\text{ext}} \).
 Description: raise the temperature \(\Rightarrow T > 0 \).

- **Alternative**: violate constraint by adjusting conserved charges while preserving \(T = 0 \) (retain \(M = M_{\text{ext}} \)).
Constraint Follows from Supersymmetry

- (Inaccurate) lore: constraint required to avoid **naked closed timelike curves**.

- SUSY algebra + **unitarity** gives **BPS bound**:

\[
\{Q, Q^\dagger\} = M - M_{\text{BPS}} \geq 0
\]
\[
\sum_i Q_i + g(J_a + J_b)
\]

- Mass \(M\) of all black hole solutions satisfies identity with form

\[
M - M_{\text{BPS}} = (\ldots)^2 + (\ldots)^2 \geq 0
\]
\[
\equiv 0 \text{ for } T=0
\]

BPS saturation shows 2nd \((\ldots)^2 = 0\) \(\Rightarrow\) **constraint**.

- Constraint follows from **BPS** with **no other assumptions**.
Detour: BTZ Black Holes

Example: black holes in $\text{AdS}_3 \times S^3$ dual to CFT_2 with $(4,4)$ SUSY.

Analysis in AdS_3 spacetime and in CFT_2 are very similar.

Four quantum numbers: $\epsilon, p \, (\text{AdS}_3), \, j_R, j_L \, (S^3)$.

Conformal weights $h_{R,L} = \frac{1}{2}(\epsilon \pm p) + \frac{1}{4}k_{R,L}$ and **R-charges** $j_{R,L}$.

Partition function:

$$Z = \text{Tr} \, e^{2\pi i \tau (L_0 - \frac{1}{4}k_R) + 2\pi i z j_R - 2\pi i \bar{\tau} \tilde{L}_0 - \frac{1}{4}k_L + 2\pi i \bar{z} j_L}$$

$\text{SL}(2, \mathbb{R}) \times \text{SL}(2, \mathbb{R})$ invariant NS-**vacuum** $L_0, \tilde{L}_0 \rightarrow 0$ controlled by Casimir energy.
BTZ Black Holes: Statistical Description

Modular transform $\tau \to -\tau^{-1}$ maps vacuum to statistical regime:

$$\ln Z = \frac{\pi i k_R}{2\tau} (1 - 4z^2) - \frac{\pi i k_L}{2\bar{\tau}} (1 - 4\bar{z}^2)$$

Legendre transform gives the correct black hole entropy:

$$S = 2\pi \sqrt{k_R(E + P) - \frac{1}{4} J_R^2} + 2\pi \sqrt{k_L(E - P) - \frac{1}{4} J_L^2}$$

Extremality ($T = 0$): $\frac{1}{2}(E - P) = \frac{1}{4k_L} J_L^2$

BPS saturation (chiral primary):

$$\frac{1}{2}(E - P) + \frac{1}{4} k_L = \frac{1}{2} J_L \quad \Rightarrow \quad J_L = k_L$$

consistency

2nd condition
Perspectives on Constraint from AdS$_3$/CFT$_2$

> Supersymmetric states in CFT$_2$:
> **Chiral primaries** $\bar{h} = \frac{1}{2}j_L$ with $0 \leq j_L \leq 2k_L$ (unitarity).

> Supersymmetric black hole geometries:
> Exist only for $J_L = k_L$ (so **two conditions** on parameters).

> **Elliptic genus**: index entirely holomorphic \Rightarrow co-dimension 2 in parameter space. Inserting $(-)^F$ “averages” over all j_L.

Physics lesson: the **constraint emerges** from supersymmetry of the **ensemble average**.
Another Perspective: SUSY Breaking Mechanisms

\[S = 2\pi \sqrt{k_R(E + P) - \frac{1}{4}J_R^2} + 2\pi \sqrt{k_L(E - P) - \frac{1}{4}J_L^2} \]

SUSY breaking excitations

- **Conventional SUSY breaking** (temperature \(T \)):
 Activate excitations in the \(L \) sector.

- **Novel SUSY breaking**:
 \(L \) sector in **ground state** \(\Rightarrow E > E_{BPS} = P + J_L - \frac{1}{2}k_L \).

 Additional excitations in the \(R \) sector.

Aside: 4D extremal Kerr breaks SUSY by the “novel” mechanism.
AdS$_5$ Black Hole: Heat Capacity

- Excite the black hole so mass above BPS bound

\[M = M_{\text{BPS}} + \frac{1}{2} \left(\frac{C_T}{T} \right) T^2 \]

C_T is the black hole **heat capacity** (proportional to T).

- Gravity computations give

\[
\frac{C_T}{T} = \frac{8Q^3 + \frac{1}{4}N^4(J_1 + J_2)}{\frac{1}{4}N^4 + \frac{1}{2}N^2(6Q - J_1 - J_2) + 12Q^2}
\]

- Interpretation: **number of degrees of freedom** in low energy excitations.

\[\frac{C_T}{T} \] analogous to the **central charge** $c_L = 6k_L$.

AdS$_5$ Black Hole: Capacitance

- BPS saturation implies the constraint so no SUSY if the constraint is violated.

- Then the black hole mass exceeds the BPS bound:

\[M_{\text{ext}} = M_{\text{BPS}} + \frac{1}{2} \left(\frac{C\varphi}{T} \right) \left(\frac{\varphi}{2\pi} \right)^2. \]

- \(C\varphi \) is the capacitance of the black hole. (The potential \(\varphi \) is defined precisely later)

- Gravity computations give

\[\frac{C\varphi}{T} = \frac{8Q^3 + \frac{1}{4}N^4(J_1 + J_2)}{\frac{1}{4}N^4 + \frac{1}{2}N^2(6Q^2 + J_1 + J_2) + 12Q^2}. \]

- **Note:** \(C\varphi = C_T \). Excitations violating the constraint “cost” the same as those violating the extremality bound!
nAdS$_2$/CFT$_1$ Correspondence

- All BPS black holes have AdS_2 near horizon geometry.

- AdS$_2$ does not allow excitations (with finite energy): they always deform the AdS$_2$ geometry.

- This strong IR dynamics in two dimensions has a universal description in effective quantum field theory.

- There is a realization of the same dynamics in one dimension.

- A holographic duality: near AdS$_2$/near CFT$_1$ correspondence.

Sacdev, Ye '93, Kitaev '16; Maldacena, Stanford '16.
Broken Scale Invariance

- A 1D theory (quantum mechanics) in appropriate universality class: the SYK-model.

- A 2D theory in appropriate universality class: Jackiw-Teitelboim gravity.

- Either way: scale invariant IR limit is trivial. The quantum effective field theory describes the breaking of scale invariance by the near IR theory.

- Presently: dimensionful order parameters heat capacity C_T and capacitance C_ϕ break $\mathcal{N} = 2$ superconformal invariance.
Schwarzian Description of $\mathcal{N} = 2$ Superconformal Breaking

- The **Schwarzian** effective theory of broken scale invariance

$$I = -C \int_{\partial D} du \left[\frac{\partial^3 f}{\partial u f} - \frac{3}{2} \left(\frac{\partial^2 f}{\partial u f} \right) \right]$$

The dimensionful coupling constant C is the **heat capacity**.

- The effective 1D theory of broken $\mathcal{N} = 2$ superconformal invariance adds

$$I = -C \int_{\partial D} du \ 2(\partial_\tau \sigma)^2$$

The dimensionful coupling constant C is the **capacitance**.

- Upshot: the agreement $C_T = C_\varphi$ follows from spontaneously broken $\mathcal{N} = 2$ superconformal symmetry.

Fu, Gaiotto, Maldacena, Sachdev '16
Supersymmetric Index: not so Recent Developments

- Gravity = strongly coupled regime of the dual gauge theory.

- Foundation of reliable analysis: **protected states**.

- **Preserved** supersymmetry allows construction of the **supersymmetric index**:

 \[I(\Delta_I, \omega_a) = \text{Tr}[(-)^F e^{\Delta_I Q^I + \omega_i J^i}] \]

- Grading \((-)^F\) computes (bosons - fermions) \(\Rightarrow\) certain **short representations** remain independent of coupling.

- Conventional wisdom: index \(\mathcal{O}(1)\) (**confined** phase).

 Insensitive to black holes \(\mathcal{O}(N^2)\) (**deconfined** phase).

Romelsberger '05; Kinney, Maldacena, Minwalla, Raju '05
Black Hole Entropy: Recent Claims

Partition function increases as $O(N^2)$:

$$\ln Z = -\frac{N^2}{2} \frac{\Delta_1 \Delta_2 \Delta_3}{\omega_a \omega_b}$$

Insert $(-)^F \Leftrightarrow$ implement BPS condition by complex constraint

$$\Delta_1 + \Delta_2 + \Delta_3 - \omega_a - \omega_b = 2\pi i$$

\Rightarrow Legendre transform $\ln Z$

$$S(Q^I, J^i) = \ln Z - \Delta I Q^I - \omega_i J^i$$

$\Delta I, \omega_i$ at extremum subject to constraint

Result:

$$\text{Re } S(Q^I, J^i) = 2\pi \sqrt{Q_1 Q_2 + Q_2 Q_3 + Q_1 Q_3 - \frac{1}{2} N^2 (J_a + J_b)}$$

$$\text{Im } S(Q^I, J^i) = 0 \Leftrightarrow \text{constraint on conserved charges}$$
Index Computations: Strategy

- **Enumeration of free fields**: single fields (letters), composite fields (words), exponentiation (sentences?), singlet condition

 ⇒ unitary matrix model

\[
Z(\Delta_I, \omega_i) = \int dU \exp \left[\sum_{n=1}^{\infty} \frac{1}{n} f(n\Delta_I, n\omega_i) \text{Tr} U \text{Tr} U^\dagger \right]
\]

\[
f(\Delta_I, \omega_i) = 1 - \frac{\prod_I (1 - e^{-\Delta_I})}{(1 - e^{-\omega_a})(1 - e^{-\omega_b})}
\]

- **Supersymmetric localization**

 (ab initio or via Bethe vacua)

- ...

Upshot: consolidation using modern technology.

Contentious point: *asymptotic behavior* at large \(N\).
Asymptotic Behavior of Matrix Model

- KMMR: single particle index $f < 1 \Rightarrow$ eigenvalues repulsion dominates \Rightarrow no condensation.

- New result “Cardy limit” (simple but justification dubious):

$$
\sum_{n=1}^{\infty} \frac{1}{n} [1 - f(\Delta, \omega)] \text{Tr} U \text{Tr} U^\dagger \xrightarrow{\omega_{a,b} \ll 1} \frac{N^2}{\text{rank } SU(N)} \frac{1}{\omega_a \omega_b} \sum_{n=1,\pm} e^{\pm \Delta_1 \pm \Delta_2 \pm \Delta_3} \frac{1}{n^3}
$$

- Better new result: modular invariance in 4D SCFT Gadde ’20
 Also boils down to “maximal condensation”: $\text{Tr} U \text{Tr} U^\dagger \rightarrow N^2$.

Key subtlety: study complex potentials.
Deconfinement?

- The classical limit $Q_I, J_{a,b}, M \sim N^2 \gg 1$ is deconfined.

- Physics question: is the low temperature phase confined?

- AdS-Schwarzchild: large BH branch ($F < 0$) does not reach $T = 0 \Rightarrow$ confinement transition to AdS-gas at $T < T_{HP}$.
No Evidence of Phase Transition

- BPS surface has free energy $F \equiv 0$ (marginal bound state) and co-dimension 2: $T = 0$ and $\varphi = 0$.

- **No evidence of phase transition** ($F < 0$ throughout) when potentials are large $\varphi \geq 0 \Leftrightarrow \Omega \leq 1$.
BPS as a Limit

- The **partition function** (with real potentials)

\[
Z = \text{Tr} \left[e^{-\beta(E-E^*)} + (\Phi_I - \Phi_I^*) Q_I + (\Omega_i - \Omega_i^*) J_i \right] = \text{BPS Tr} \left[e^{\Delta I Q_I + \omega_i J_i} \right]
\]

BPS reference values are $\Phi_I^* = 1$, $\Omega_i^* = 1$.

- Low temperature limit ($\beta = \infty$) identifies

\[
\text{Re } \Delta_I = \beta(\Phi_I - \Phi_I^*) = \partial_T \Phi_I \\
\text{Re } \omega_i = \beta(\Omega_i - \Omega_i^*) = \partial_T \Omega_i
\]

- Values of **thermal derivatives** ∂_T computed in spacetime/from microscopic free energy in fact **agree**.
Beyond Supersymmetry

- The index: insert \((-)^F\) or complexify potentials:

\[
\Delta_1 + \Delta_2 + \Delta_3 - \omega_a - \omega_b = 2\pi i
\]

- Minimal physical assumption: count “same” degrees of freedom also beyond the BPS limit.

- Extrapolation of constraint to the nearBPS regime:

\[
\sum_l (\Phi_l - \Phi_l^*) - \sum_i (\Omega_i - \Omega_i^*) = \varphi + 2\pi i T
\]

- Interpretation: the imaginary parts \(\text{Im} \, \Delta_l\), \(\text{Im} \, \omega_a\) probe violation of the constraint.
Supersymmetry Breaking is Protected

- Extremization of the entropy function with the generalized constraint is straightforward.

- It accounts for the parameters of **broken** $\mathcal{N} = 2$ superconformal symmetry.

- Example: the coefficient in the $\mathcal{N} = 2$ Schwarzian description

\[
\frac{C_T}{T} = \frac{C_\varphi}{T} = Q' \text{Im} \, \Delta_I + J^a \text{Im} \, \omega_a = \frac{8Q^3 + \frac{1}{4} N^4 (J_1 + J_2)}{\frac{1}{4} N^4 + \frac{1}{2} N^2 (6Q - J_1 - J_2) + 12Q^2}
\]
We developed aspects of AdS$_5$ black hole thermodynamics. Focus: the BPS limit and near the BPS limit.

Highlight: heat capacity and capacitance agree.

Interpretation: $\mathcal{N} = 2$ extension of broken scale invariance.

Highlight: may deform BPS constraint between charges.

Interpretation: deform complex constraint on potentials.