Beyond The Standard Model

The Standard Model of particle physics is amazingly successful, yet it leaves many basic questions unanswered.  From bizarre, unexplained parameters such as the cosmological constant, Higgs mass, or neutron electric dipole moment to the lack of explanation for observed phenomena such as dark matter and baryogenesis, there is strong evidence that the Standard Model must be extended.  At SITP we have focused on finding solutions to these open problems to discover what these hints tell us about the underlying laws of physics.

Video Briefs

Dark matter self interactions can leave distinctive signatures on the properties of satellite…

I construct a landscape of vacua of string theory and study the resulting ensemble of N-axion…

Related News

Crucial measurements were made at the Super-Kamiokande neutrino detector in Japan

Takaaki Kajita and Arthur McDonald led two teams which made key observations of the particles inside big underground instruments in Japan…

Slowly gathering energy 

Pascal Boegli/Getty

Kicking the world’s largest machine into overdrive is turning out to be harder than expected. Researchers at the Large Hadron Collider…

Last night the Operations team for the Large Hadron Collider (LHC) successfully circulated a beam at 6.5 teralectronvolts…

Related Events

When DM bosons have an ultra-light mass, they can act as a classical, coherent field. In many cases, and specifically in some ALP models, this field has magnetic properties, and it can therefore be measured by quantum magnetometers. The Noble and…

It is difficult to construct a post-inflation QCD axion model that solves the axion quality problem (and hence the Strong CP problem) without introducing a cosmological disaster. In a post-inflation axion model, the axion field value is…

I will explain how we can search for light Dark Matter by detecting small amounts of phonons in specific crystals. To calculate the scattering rates, we must use methods from computational condensed matter physics within the context of particle…

A self-interacting dark matter (SIDM) halo begins to thermalize once its age is comparable to the (inverse of the) self-interaction rate. Such thermalized self-gravitating systems are know to be unstable due to the so-called "Gravo-Thermal…

New millicharged particles—particles with weak electromagnetic interactions, either through an explicit photon coupling or through a kinetically-mixed hidden photon—are a well-motivated dark matter candidate. Previous models of millicharged dark…

The low frequency part of the gravitational wave spectrum generated by local physics, such as a phase transition, is largely fixed by causality, offering a clean window into the early Universe. Due to the difference between sub-horizon and super-…