Main content start

Dark Solar Wind

Speaker
Erwin Tanin
Date
Fri December 2nd 2022, 3:00pm
Affiliation
Johns Hopkins
Location
PAB 102/103

We study the solar emission of light dark sector particles that self-interact strongly enough to self-thermalize. The resulting outflow behaves like a fluid which accelerates under its own thermal pressure to highly relativistic bulk velocities in the solar system. Compared to the ordinary non-interacting scenario, the local outflow has a much higher number density and correspondingly a much lower average energy per particle. We show how this generic phenomenon arises in a dark sector comprised of millicharged particles strongly self-interacting via a dark photon. The millicharged plasma wind emerging in this model has novel yet predictive signatures that encourage new experimental directions. This phenomenon demonstrates how a small step away from the simplest models can lead to radically different outcomes and thus motivates a broader search for dark sector particles.